Skip to Content
Merck
  • Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype.

Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype.

Journal of medicinal chemistry (1996-10-11)
Y C Kim, X D Ji, K A Jacobson
ABSTRACT

The adenosine antagonist 9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-amine (CGS15943) binds to human A3 receptors with high affinity (Ki = 14 nM), while it lacks affinity at rat A3 receptors. Acylated derivatives of the 5-amino group and other modifications were prepared in an effort to provide A3 subtype selectivity. Affinity was determined in radioligand binding assays at rat brain A1 and A2A receptors using [3H]-(R)-PIA ([3H]-(R)-N6-(phenylisopropyl)-adenosine) and [3H]CGS 21680 ([3H]-2-[[4-(2-carboxy ethyl)phenyl]ethylaminol]-5'-(N- ethyl- carbamoyl)adenosine), respectively. Affinity was determined at cloned human A3 receptors using [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5'-(N-methylcarbamoyl)adenosine). A series of straight chain alkyl amides demonstrated that the optimal chain length occurs with the 5-N-propionyl derivative, 3, which had a Ki value of 7.7 nM at human A3 receptors, and was 40- and 14-fold selective vs rat A1 and A2A receptors, respectively. The 5-N-benzoyl derivative, 10, displayed Ki values of 680 and 273 nM at rat A1 and A2A receptors, respectively, and 3.0 nM at human A3 receptors. A 5-N-phenylacetyl derivative, 12, was 470-fold selective for human A3 vs rat A1 receptors with a Ki value of 0.65 nM. A conjugate of Boc-gamma-aminobutyric acid was also prepared but was nonselective. Conversion of the 5-amino group of CGS15943 to an oxo function resulted in lower affinity but 15-fold selectivity for human A3 receptors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MRS 1220, solid