Skip to Content
Merck
  • Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors.

Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors.

Journal of the American Chemical Society (2008-08-30)
Jihoon Kang, Nayool Shin, Do Young Jang, Vivek M Prabhu, Do Y Yoon
ABSTRACT

A comprehensive structural and electrical characterization of solution-processed blend films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconductor and poly(alpha-methylstyrene) (PalphaMS) insulator was performed to understand and optimize the blend semiconductor films, which are very attractive as the active layer in solution-processed organic thin-film transistors (OTFTs). Our study, based on careful measurements of specular neutron reflectivity and grazing-incidence X-ray diffraction, showed that the blends with a low molecular-mass PalphaMS exhibited a strong segregation of TIPS-pentacene only at the air interface, but surprisingly the blends with a high molecular-mass PalphaMS showed a strong segregation of TIPS-pentacene at both air and bottom substrate interfaces with high crystallinity and desired orientation. This finding led to the preparation of a TIPS-pentacene/PalphaMS blend active layer with superior performance characteristics (field-effect mobility, on/off ratio, and threshold voltage) over those of neat TIPS-pentacene, as well as the solution-processability of technologically attractive bottom-gate/bottom-contact OTFT devices.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methylstyrene, 60% meta, 40% para and 1% ortho, 99%, contains ~50 ppm 4-tert-butylcatechol as inhibitor