Passa al contenuto
Merck
  • Distinct solubility and cytotoxicity regimes of paclitaxel-loaded cationic liposomes at low and high drug content revealed by kinetic phase behavior and cancer cell viability studies.

Distinct solubility and cytotoxicity regimes of paclitaxel-loaded cationic liposomes at low and high drug content revealed by kinetic phase behavior and cancer cell viability studies.

Biomaterials (2017-09-11)
Victoria M Steffes, Meena M Murali, Yoonsang Park, Bretton J Fletcher, Kai K Ewert, Cyrus R Safinya
ABSTRACT

Lipid-based particles are used worldwide in clinical trials as carriers of hydrophobic paclitaxel (PTXL) for cancer chemotherapy, albeit with little improvement over the standard-of-care. Improving efficacy requires an understanding of intramembrane interactions between PTXL and lipids to enhance PTXL solubilization and suppress PTXL phase separation into crystals. We studied the solubility of PTXL in cationic liposomes (CLs) composed of positively charged 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) and neutral 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) as a function of PTXL membrane content and its relation to efficacy. Time-dependent kinetic phase diagrams were generated from observations of PTXL crystal formation by differential-interference-contrast microscopy. Furthermore, a new synchrotron small-angle x-ray scattering in situ methodology applied to DOTAP/DOPC/PTXL membranes condensed with DNA enabled us to detect the incorporation and time-dependent depletion of PTXL from membranes by measurements of variations in the membrane interlayer and DNA interaxial spacings. Our results revealed three regimes with distinct time scales for PTXL membrane solubility: hours for >3 mol% PTXL (low), days for ≈ 3 mol% PTXL (moderate), and ≥20 days for < 3 mol% PTXL (long-term). Cell viability experiments on human cancer cell lines using CL

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Glycerol mono-oleate, European Pharmacopoeia (EP) Reference Standard