Passa al contenuto
Merck

Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium.

Molecular medicine reports (2015-11-18)
Shoushi Wang, Tingting Song, Cuibo Leng, Ketao Lan, Jishun Ning, Haichen Chu
ABSTRACT

Parkinson's disease (PD) is a progressive and degenerative disorder of the central nervous system, characterized by the loss of dopaminergic neurons and muscular rigidity. Treatment with propofol (2,6‑diisopropylphenol) has been observed to attenuate oxidative stress injury via inhibition of programmed cell death. Results from the present study indicate that propofol treatment attenuates 1‑methyl‑4‑phenylpyridinium (MPP+)‑induced oxidative stress, which was demonstrated by increased levels of reactive oxygen species, 4‑hydroxy‑2‑nonenal and protein carbonyls. Furthermore, it was demonstrated that propofol may ameliorate MPP+‑induced mitochondrial dysfunction by increasing the level of ATP and the mitochondrial membrane potential. MTT and lactate dehydrogenase assays indicated that propofol treatment reduces cell vulnerability to MPP+‑induced insult. Propofol was also observed to prevent apoptotic signals by reducing the ratio of Bcl‑2‑associated X protein to B‑cell lymphoma 2, reducing the expression level of cleaved caspase‑3 and attenuating cytochrome c release. Thus, propofol may present as a novel therapeutic strategy for the treatment of PD.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Diaminofluorescein-FM diacetate, ≥98% (HPLC)
Sigma-Aldrich
Tetramethylrhodamine methyl ester perchlorate, ≥95%
Sigma-Aldrich
Anti-DNPH1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution, ab1
Sigma-Aldrich
MISSION® esiRNA, targeting human COX4I1