Passa al contenuto
Merck
  • DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD.

DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD.

Human molecular genetics (2015-06-05)
Jong-Won Lim, Lauren Snider, Zizhen Yao, Rabi Tawil, Silvère M Van Der Maarel, Frank Rigo, C Frank Bennett, Galina N Filippova, Stephen J Tapscott
ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the DUX4 transcription factor in skeletal muscle. The DUX4 retrogene is encoded in the D4Z4 macrosatellite repeat array, and smaller array size or a mutation in the SMCHD1 gene results in inefficient epigenetic repression of DUX4 in skeletal muscle, causing FSHD1 and FSHD2, respectively. Previously we showed that the entire D4Z4 repeat is bi-directionally transcribed with the generation of small si- or miRNA-like fragments and suggested that these might suppress DUX4 expression through the endogenous RNAi pathway. Here we show that exogenous siRNA targeting the region upstream of the DUX4 transcription start site suppressed DUX4 mRNA expression and increased both H3K9 methylation and AGO2 recruitment. In contrast, similarly targeted MOE-gapmer antisense oligonucleotides that degrade RNA but do not engage the RNAi pathway did not repress DUX4 expression. In addition, knockdown of DICER or AGO2 using either siRNA or MOE-gapmer chemistries resulted in the induction of DUX4 expression in control muscle cells that normally do not express DUX4, indicating that the endogenous RNAi pathway is necessary to maintain repression of DUX4 in control muscle cells. Together these data demonstrate a role of the endogenous RNAi pathway in repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat, and show that enhancing the activity of this pathway by supplying exogenous siRNA oligonucleotides represents a potential therapeutic approach to silencing DUX4 in FSHD.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Desametasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Fenolo, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Sigma-Aldrich
Desametasone, ≥98% (HPLC), powder
Sigma-Aldrich
Fenolo, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Fenolo, ≥99%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Fenolo, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Cloroformio, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Desametasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Fenolo, ≥89.0%
Sigma-Aldrich
Fenolo, natural, 97%, FG
Sigma-Aldrich
Cloroformio, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Fenolo, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Fenolo, for molecular biology
Sigma-Aldrich
Cloroformio, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Fenolo, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Desametasone, meets USP testing specifications
Sigma-Aldrich
Fenolo, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Fenolo, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Fenolo, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Fenolo, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Fenolo, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Fenolo, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
MISSION® esiRNA, targeting human T