Passa al contenuto
Merck
  • Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells.

Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells.

The Journal of biological chemistry (1996-11-15)
Y Cao, R W Ji, D Davidson, J Schaller, D Marti, S Söhndel, S G McCance, M S O'Reilly, M Llinás, J Folkman
ABSTRACT

Recently we have identified angiostatin, an endogenous angiogenesis inhibitor of 38 kDa which specifically blocks the growth of endothelial cells (O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C. , Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Cell 79, 315-328; Folkman, J. (1995) Nat. Med. 1, 27-31). Angiostatin was shown to represent an internal fragment of plasminogen containing the first four kringle structures. We now report on the inhibitory effects of individual or combined kringle structures of angiostatin on capillary endothelial cell proliferation. Recombinant kringle 1 and kringle 3 exhibit potent inhibitory activity with half-maximal concentrations (ED50) of 320 nM and 460 nM, respectively. Also, recombinant kringle 2 displays a significant inhibition, although decreased compared with both kringle 1 and kringle 3. In contrast, kringle 4 is an ineffective inhibitor of basic fibroblast growth factor-stimulated endothelial cell proliferation. Among the tandem kringle arrays, the recombinant kringle 2-3 fragment exerts inhibitory activity similar to kringle 2 alone. However, relative to kringle 2-3, a marked enhancement in inhibition is observed when individual kringle 2 and kringle 3 are added together to endothelial cells. This implies that it is necessary to open the cystine bridge between kringle 2 and kringle 3 to obtain the maximal inhibitory effect of kringle 2-3. An increased (<2-fold) inhibitory activity is observed for the kringle 1-3 fragment (ED50 = 70 nM) compared with kringle 1-4 (ED50 = 135 nM). These data indicate that the anti-proliferative activity of angiostatin on endothelial cells is shared by kringle 1, kringle 2, and kringle 3, but probably not by kringle 4 and that more potent inhibition results when kringle 4 is removed from angiostatin. Thus, in view of the variable lysine affinity of the homologous domains, it would appear that lysine binding capability does not correlate with the relative inhibitory effects of the kringle-containing constructs. However, as we also demonstrate, appropriate folding of kringle structures is essential for angiostatin to maintain its full anti-endothelial activity.