Passa al contenuto
Merck

The osseointegration of zirconia dental implants.

Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia (2013-08-24)
Patrick A Assal
ABSTRACT

Zirconia is currently extensively used in medicine, especially in orthopedic surgery for various joint replacement appliances. Its outstanding mechanical and chemical properties have made it the "material of choice" for various types of prostheses. Its color in particular makes it a favored material to manufacture dental implants. A literature search through Medline enables one to see zirconia's potential but also to point out and identify its weaknesses. The search shows that zirconia is a biocompatible, osteoconductive material that has the ability to osseointegrate. Its strength of bonding to bone depends on the surface structure of the implant. Although interesting, the studies do not allow for the recommendation of the use of zirconia implants in daily practice. The lack of studies examining the chemical and structural composition of zirconia implants does not allow for a "gold standard" to be established in the implant manufacturing process. Randomized clinical trials (RCT) are urgently needed on surface treatments of zirconia implants intended to achieve the best possible osseointegration.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Zirconium(IV) oxide, powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
Zirconium(IV) oxide, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Zirconium(IV) oxide, 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O