Passa al contenuto
Merck
  • Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells.

Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells.

American journal of physiology. Endocrinology and metabolism (2003-03-20)
Kazuhiro Eto, Tokuyuki Yamashita, Kenzo Hirose, Yoshiharu Tsubamoto, Edward K Ainscow, Guy A Rutter, Satoshi Kimura, Mitsuhiko Noda, Masamitsu Iino, Takashi Kadowaki
ABSTRACT

We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
L-Glutamic acid dimethyl ester hydrochloride, ≥99.0% (anhydrous basis material, AT)