Passa al contenuto
Merck
  • Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments.

Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments.

The Journal of biological chemistry (1977-01-10)
T B Helting, O Zwisler
PMID401808
ABSTRACT

Tetanus toxin was digested with papain, yielding one major polypeptide (Fragment C) with a molecular weight corresponding to 47,000 +/- 5%, thus comprising about one-third of the toxin molecule. Fragment C was antigenically active, atoxic, and stimulated the formation of antibodies neutralizing the lethal action of tetanus toxin in vivo. Furthermore, a second split product (Fragment B) was isolated from the papain digest, containing two polypeptide chains linked together via a disulfide bond. Fragment B (Mr = 95,000 +/- 5%) was atoxic and showed a reaction of nonidentity with Fragment C on immunodiffusion analysis against tetanus antitoxin. The basic two-chain structure (heavy and light chain polypeptide, cf. Matsuda, M., and Yoneda, M. (1975) Infect. Immun. 12, 1147-1153) of tetanus toxin has been confirmed and the relationship between Fragments B and C within this framework has been established. Fragment C was distinguished from the light chain by electrophoresis in sodium dodecyl sulfate and by immunodiffusion analysis, indicating that this fragment constitutes a portion of the heavy chain polypeptide. Fragment B showed a reaction of partial identity with the light as well as the heavy chain from tetanus toxin. Reduction of Fragment B with dithiothreitol followed by gel chromatography yielded a fraction which was indistinguishable from the light chain portion of the toxin molecule. It is concluded that Fragment B comprises the complementary portion of the heavy chain (remaining after scission of the polypeptide bond(s) releasing Fragment C) linked to the light chain by a disulfide bond.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Tetanus toxin C fragment from Clostridium tetani