Passa al contenuto
Merck
  • Diazepam-binding inhibitor-derived peptides induce intracellular calcium changes and modulate human neutrophil function.

Diazepam-binding inhibitor-derived peptides induce intracellular calcium changes and modulate human neutrophil function.

Journal of leukocyte biology (2000-05-16)
M Cosentino, F Marino, S Cattaneo, L Di Grazia, C Francioli, A M Fietta, S Lecchini, G Frigo
ABSTRACT

We studied the effects of two diazepam-binding inhibitor (DBI)-derived peptides, triakontatetraneuropeptide (DBI 17-50, TTN) and eiksoneuropeptide (DBI 51-70, ENP), on cytosolic free Ca2+ concentrations ([Ca2+]i), chemotaxis, superoxide anion (O2-) generation, and phagocytosis in human neutrophils. Both TTN and ENP induced a rapid and transient rise of [Ca2+]i. The effect of TTN depended on the presence of extracellular Ca2+, whereas the effect of ENP also persisted after extracellular Ca2+ chelation. TTN induced neutrophil chemotaxis, stimulated O2- generation, and enhanced phagocytosis. ENP did not affect cell migration and oxidative metabolism but enhanced phagocytosis. Both peptides modulated N-formyl-methionyl-leucyl-phenylalanine- and phorbol myristate acetate-induced O2- generation. Because neutrophils express benzodiazepine receptors of the peripheral type (pBRs) and DBI-derived peptides may interact with such receptors, we investigated the possible role of pBRs in TTN- or ENP-induced effects. The synthetic pBR ligand RO 5-4864 increased [Ca2+]i through extracellular Ca2+ influx and this effect was prevented by the pBR antagonist PK-11195. RO 5-4864, however, was ineffective on neutrophil migration and O2- generation and only slightly affected phagocytosis. Moreover, PK-11195 delayed the [Ca2+]i rise induced by TTN but did not significantly affect its extent, and had no effect on the [Ca2+]i rise induced by ENP. We conclude that DBI-derived peptides induce [Ca2+]i changes and modulate neutrophil function mainly through pBR-independent pathways. In view of the wide cell and tissue distribution of DBI in the brain and in peripheral organs, modulation of neutrophil function by DBI-derived peptides may be relevant for both the neuroimmune network and the development and regulation of the inflammatory processes.