Passa al contenuto
Merck

SARS-CoV-2 spike E156G/Δ157-158 mutations contribute to increased infectivity and immune escape.

Life science alliance (2022-03-18)
Tarun Mishra, Rishikesh Dalavi, Garima Joshi, Atul Kumar, Pankaj Pandey, Sanjeev Shukla, Ram K Mishra, Ajit Chande
ABSTRACT

Breakthrough infections by emerging SARS-CoV-2 variants raise significant concerns. Here, we sequence-characterized the spike gene from breakthrough infections that corresponded to B.1.617 sublineage. Delineating the functional impact of spike mutations revealed that N-terminal domain (NTD)-specific E156G/Δ157-158 contributed to increased infectivity and reduced sensitivity to vaccine-induced antibodies. A six-nucleotide deletion (467-472) in the spike-coding region introduced this change in the NTD. We confirmed the presence of E156G/Δ157-158 from cases concurrently screened, in addition to other circulating spike (S1) mutations such as T19R, T95I, L452R, E484Q, and D614G. Notably, E156G/Δ157-158 was present in more than 90% of the sequences reported from the USA and UK in October 2021. The spike-pseudotyped viruses bearing a combination of E156G/Δ157-158 and L452R exhibited higher infectivity and reduced sensitivity to neutralization. Notwithstanding, the post-recovery plasma robustly neutralized viral particles bearing the mutant spike. When the spike harbored E156G/Δ157-158 along with L452R and E484Q, increased cell-to-cell fusion was also observed, suggesting a combinatorial effect of these mutations. Our study underscores the importance of non-RBD changes in determining infectivity and immune escape.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anti-SARS-CoV-1/2 S Protein Antibody, clone 2B3E5 ZooMAb® Mouse Monoclonal, recombinant, expressed in HEK 293 cells