Passa al contenuto
Merck
  • Optimized DNA extraction and purification method for characterization of bacterial and fungal communities in lung tissue samples.

Optimized DNA extraction and purification method for characterization of bacterial and fungal communities in lung tissue samples.

Scientific reports (2020-10-17)
Vicente Pérez-Brocal, Fabien Magne, Susana Ruiz-Ruiz, Carolina A Ponce, Rebeca Bustamante, Viviana San Martin, Mireya Gutierrez, Gianna Gatti, Sergio L Vargas, Andrés Moya
ABSTRACT

Human lungs harbor a scarce microbial community, requiring to develop methods to enhance the recovery of nucleic acids from bacteria and fungi, leading to a more efficient analysis of the lung tissue microbiota. Here we describe five extraction protocols including pre-treatment, bead-beating and/or Phenol:Chloroform:Isoamyl alcohol steps, applied to lung tissue samples from autopsied individuals. The resulting total DNA yield and quality, bacterial and fungal DNA amount and the microbial community structure were analyzed by qPCR and Illumina sequencing of bacterial 16S rRNA and fungal ITS genes. Bioinformatic modeling revealed that a large part of microbiome from lung tissue is composed of microbial contaminants, although our controls clustered separately from biological samples. After removal of contaminant sequences, the effects of extraction protocols on the microbiota were assessed. The major differences among samples could be attributed to inter-individual variations rather than DNA extraction protocols. However, inclusion of the bead-beater and Phenol:Chloroform:Isoamyl alcohol steps resulted in changes in the relative abundance of some bacterial/fungal taxa. Furthermore, inclusion of a pre-treatment step increased microbial DNA concentration but not diversity and it may contribute to eliminate DNA fragments from dead microorganisms in lung tissue samples, making the microbial profile closer to the actual one.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
3-Methyl-1-butanol, reagent grade, 98%