Passa al contenuto
Merck
  • AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells.

AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells.

Molecular cancer therapeutics (2018-06-13)
Kshitij Verma, Nehal Gupta, Tianzhu Zang, Phumvadee Wangtrakluldee, Sanjay K Srivastava, Trevor M Penning, Paul C Trippier
ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17 β-hydroxysteroid dehydrogenase, is responsible for intratumoral androgen biosynthesis, contributing to the development of castration-resistant prostate cancer (CRPC) and eventual chemotherapeutic failure. Significant upregulation of AKR1C3 is observed in CRPC patient samples and derived CRPC cell lines. As AKR1C3 is a downstream steroidogenic enzyme synthesizing intratumoral testosterone (T) and 5α-dihydrotestosterone (DHT), the enzyme represents a promising therapeutic target to manage CRPC and combat the emergence of resistance to clinically employed androgen deprivation therapy. Herein, we demonstrate the antineoplastic activity of a potent, isoform-selective and hydrolytically stable AKR1C3 inhibitor (E)-3-(4-(3-methylbut-2-en-1-yl)-3-(3-phenylpropanamido)phenyl)acrylic acid (KV-37), which reduces prostate cancer cell growth in vitro and in vivo and sensitizes CRPC cell lines (22Rv1 and LNCaP1C3) toward the antitumor effects of enzalutamide. Crucially, KV-37 does not induce toxicity in nonmalignant WPMY-1 prostate cells nor does it induce weight loss in mouse xenografts. Moreover, KV-37 reduces androgen receptor (AR) transactivation and prostate-specific antigen expression levels in CRPC cell lines indicative of a therapeutic effect in prostate cancer. Combination studies of KV-37 with enzalutamide reveal a very high degree of synergistic drug interaction that induces significant reduction in prostate cancer cell viability via apoptosis, resulting in >200-fold potentiation of enzalutamide action in drug-resistant 22Rv1 cells. These results demonstrate a promising therapeutic strategy for the treatment of drug-resistant CRPC that invariably develops in prostate cancer patients following initial treatment with AR antagonists such as enzalutamide. Mol Cancer Ther; 17(9); 1833-45. ©2018 AACR.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anti-AKR1C3 antibody, Mouse monoclonal, clone NP6.G6.A6, purified from hybridoma cell culture
Sigma-Aldrich
Anti-Mouse IgG1 (γ1), CF350 antibody produced in goat, ~2 mg/mL, affinity isolated antibody, buffered aqueous solution