Passa al contenuto
Merck

Increased mitochondrial fission is critical for hypoxia-induced pancreatic beta cell death.

PloS one (2018-05-17)
Da Zhang, Yanfang Liu, Yao Tang, Xiaofeng Wang, Zhichao Li, Rui Li, Zhenyu Ti, Weidong Gao, Jigang Bai, Yi Lv
ABSTRACT

Hypoxia-mediated pancreatic beta cell death is one of the main causes of pancreatic beta celldeath, which leads to the loss of functional pancreatic beta cell mass and type 1 diabetes andtype 2 diabetes.However, the molecular mechanisms that control life and death of pancreatic beta cells remain poorly understood. Here we showed that mitochondrial fission was strongly induced in pancreatic beta cellsmainly due to an elevation of DRP1S616 phosphorylation through HIF-1αactivation and subsequent DRP1 mitochondrial translocation. Hypoxia-induced pancreatic beta cell death can be reversed by the inhibition of mitochondrial fission viaDRP1 knockdown. We further demonstrated that hypoxia-induced mitochondrial fission untightened the cristae formation, which subsequently triggers mitochondrial cytochrome c release and consequent caspase activation. Moreover, treatment with mitochondrial division inhibitor-1 (Mdivi-1), a specific inhibitor of DRP1-mediated mitochondrial fission, significantly suppressedbeta cell death in vitro, indicating a promising therapeutic strategy for treatment of diabetes.Taken together, our results reveal a crucial role for the DRP1-mediated mitochondrial fission in hypoxia-induced beta cell death, which provides a strong evidence for thisprocess as drug target indiabetestreatment.