Accéder au contenu
Merck

KCC2 downregulation facilitates epileptic seizures.

Scientific reports (2017-03-11)
Lulan Chen, Li Wan, Zheng Wu, Wanting Ren, Yian Huang, Binbin Qian, Yun Wang
RÉSUMÉ

GABAA receptor-mediated inhibition depends on the maintenance of low level intracellular [Cl-] concentration, which in adult depends on neuron specific K+-Cl- cotransporter-2 (KCC2). Previous studies have shown that KCC2 was downregulated in both epileptic patients and various epileptic animal models. However, the temporal relationship between KCC2 downregulation and seizure induction is unclear yet. In this study, we explored the temporal relationship and the influence of KCC2 downregulation on seizure induction. Significant downregulation of plasma membrane KCC2 was directly associated with severe (Racine Score III and above) behavioral seizures in vivo, and occurred before epileptiform bursting activities in vitro induced by convulsant. Overexpression of KCC2 using KCC2 plasmid effectively enhanced resistance to convulsant-induced epileptiform bursting activities in vitro. Furthermore, suppression of membrane KCC2 expression, using shRNAKCC2 plasmid in vitro and shRNAKCC2 containing lentivirus in vivo, induced spontaneous epileptiform bursting activities in vitro and Racine III seizure behaviors accompanied by epileptic EEG in vivo. Our findings novelly demonstrated that altered expression of KCC2 is not the consequence of seizure occurrence but likely is the contributing factor.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Anticorps anti-cotransporteur K+/Cl- (KCC2), Upstate®, from rabbit
Sigma-Aldrich
Monoclonal Anti-Kcc2 antibody produced in mouse, clone S1-12, purified immunoglobulin