Accéder au contenu
Merck

Enzymatic characterization of beta D-galactoside alpha2 leads to 3 sialyltransferase from porcine submaxillary gland.

The Journal of biological chemistry (1979-06-10)
J I Rearick, J E Sadler, J C Paulson, R L Hill
PMID438198
RÉSUMÉ

The substrate requirements, linkage specificity, and kinetic mechanism of a pure sialyltransferase from porcine submaxillary glands have been examined. The enzyme transfers sialic acid from the donor nucleotide, CMP-NeuAc, into the sequence NeuAcalpha2 leads to 3Galbeta1 leads to 3GalNAc, which is found in both glycoproteins and gangliosides. It forms only the alpha2 leads to 3 linkage with the disaccharide Gal/beta1 leads to 3GalNAc or antifreeze glycoprotein, which, along with asialoglycoproteins containing the sequence Gal/beta1 leads to 3GalNAcalpha1 leads to O-Thr/Ser, are the best acceptor substrates. Low molecular weight galactosides linked beta1 leads to 3 to glycose residues other than N-acetylgalactosamine are poor acceptors with relatively high Km values, while those in beta1 leads to 4 or beta1 leads to 6 linkages have both high Km and low Vmax. With glycoprotein and ganglioside acceptors this substrate specificity appears to be even more strict, with the sequence Gal/beta1 leads to 3GalNAc serving as the exclusive acceptor. Thus the present enzyme is not responsible either for the sequence, NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAc, found in the asparagine-linked chains of certain glycoproteins, or for the synthesis of hematoside, NeuAcalpha2 leads to 3Galbeta1 leads to 4Glcbeta1 leads to 1Cer. Initial rate kinetic studies, with and without inhibitors, suggest that the transferase has an equilibrium random order mechanism.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
α-2,3-Sialyltransferase from Pasteurella multocida, recombinant, expressed in E. coli BL21, ≥2 units/mg protein