Accéder au contenu
Merck

Release of mitochondrial Opa1 following oxidative stress in HT22 cells.

Molecular and cellular neurosciences (2015-01-13)
Thomas H Sanderson, Sarita Raghunayakula, Rita Kumar
RÉSUMÉ

Cellular mechanisms involved in multiple neurodegenerative diseases converge on mitochondria to induce overproduction of reactive oxygen species, damage to mitochondria, and subsequent cytochrome c release. Little is currently known regarding the contribution mitochondrial dynamics play in cytochrome c release following oxidative stress in neurodegenerative disease. Here we induced oxidative stress in the HT22 cell line with glutamate and investigated key mediators of mitochondrial dynamics to determine the role this process may play in oxidative stress induced neuronal death. We report that glutamate treatment in HT22 cells induces increase in reactive oxygen species (ROS), release of the mitochondrial fusion protein Opa1 into the cytosol, with concomitant release of cytochrome c. Furthermore, following the glutamate treatment alterations in cell signaling coincide with mitochondrial fragmentation which culminates in significant cell death in HT22 cells. Finally, we report that treatment with the antioxidant tocopherol attenuates glutamate induced-ROS increase, release of mitochondrial Opa1 and cytochrome c, and prevents cell death.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
(±)-α-Tocophérol, synthetic, ≥96% (HPLC)
Sigma-Aldrich
L-Glutamic acid, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-100.5%
Sigma-Aldrich
Monoclonal Anti-GAPDH antibody produced in mouse, clone GAPDH-71.1, purified from hybridoma cell culture