Accéder au contenu
Merck

Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.

International journal of nanomedicine (2015-09-09)
Gautam Das, Thao Quynh Ngan Tran, Hyon Hee Yoon
RÉSUMÉ

In this work, three different spherulitic nanostructures Cu-CuOA, Cu-CuOB, and Cu-CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu-CuO nanostructures were investigated by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu-CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu-CuOA, Cu-CuOB, and Cu-CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM(-1)·cm(-2), respectively. Moreover, the linear range is dependent on the structure types: 0.023-0.29 mM, 0.07-0.8 mM, and 0.023-0.34 mM for Cu-CuOA, Cu-CuOB, and Cu-CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu-CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, L-ascorbic acid, and creatinine. The high performance of the Cu-CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu-CuOB electrode applied to real urine and serum sample showed satisfactory performance.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Borohydrure de sodium, powder, ≥98.0%
Sigma-Aldrich
Bromure d'hexadécyltriméthylammonium, ≥98%
Sigma-Aldrich
Borohydrure de sodium, ReagentPlus®, 99%
Sigma-Aldrich
Bromure d'hexadécyltriméthylammonium, for molecular biology, ≥99%
Sigma-Aldrich
Bromure d'hexadécyltriméthylammonium, BioXtra, ≥99%
Sigma-Aldrich
Copper(II) acetate, 98%
Sigma-Aldrich
Borohydrure de sodium, granular, 99.99% trace metals basis
Sigma-Aldrich
Bromure d'hexadécyltriméthylammonium, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
Borohydrure de sodium, purum p.a., ≥96% (gas-volumetric)
Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
Copper(II) acetate, powder, 99.99% trace metals basis
Sigma-Aldrich
Borohydrure de sodium, granular, 10-40 mesh, 98%
Sigma-Aldrich
Borohydrure de sodium, caplets (18 × 10 × 8 mm), 98%
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
Borohydrure de sodium, powder
SAFC
Bromure d'hexadécyltriméthylammonium, USP/NF