Accéder au contenu
Merck

Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction.

Molecular biology of the cell (2015-01-23)
Gonzalo Vilas, Devishree Krishnan, Sampath Kumar Loganathan, Darpan Malhotra, Lei Liu, Megan Rachele Beggs, Patrizia Gena, Giuseppe Calamita, Martin Jung, Richard Zimmermann, Grazia Tamma, Joseph Roman Casey, Robert Todd Alexander
RÉSUMÉ

Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-AQP1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution