Accéder au contenu
Merck
  • Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

PLoS genetics (2014-12-05)
Xin Zhou, Klaus von der Mark, Stephen Henry, William Norton, Henry Adams, Benoit de Crombrugghe
RÉSUMÉ

One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Tamoxifène, ≥99%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Huile de maïs, delivery vehicle for fat-soluble compounds
Sigma-Aldrich
Hydriodic acid, 57 wt. % in H2O, distilled, stabilized, 99.95%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Éthanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Hydriodic acid, contains no stabilizer, ACS reagent, 55%
Sigma-Aldrich
Hydriodic acid, contains no stabilizer, distilled, 57 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Éthanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Hydriodic acid, contains ≤1.5% hypophosphorous acid as stabilizer, ACS reagent, ≥47.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Éthanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Hydriodic acid, 57 wt. %, distilled, 99.999% trace metals basis
Sigma-Aldrich
Éthanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
USP
Éthanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Éthanol, for residue analysis
Supelco
Éthanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Anticorps anti-collagène de souris de type I, Chemicon®, from rabbit
Supelco
Tamoxifène, analytical standard
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 1% cyclohexane, A15 CYCLO1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Éthanol, tested according to Ph. Eur.
Sigma-Aldrich
Éthanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Sulfobromophthalein disodium salt hydrate, used to study hepatocyte transport functions