Accéder au contenu
Merck

Radiation-induced metabolomic changes in sterile male Μοnochamus alternatus (Coleoptera: Cerambycidae).

Journal of insect science (Online) (2014-11-05)
L J Qu, L J Wang, Y A Zhang, Q H Wang, Y Z Wang, T H Zhao, W Z Cai
RÉSUMÉ

Radiation-induced sterile insect technique is a biologically based, environment-friendly method for the suppression or eradication of a number of insect pests. Although the basic mechanisms underlying the technology have been well studied, little is known about the cell responses in organisms. Characterization of the metabolic shift associated with radiation exposure in sterile insects would be helpful for understanding the detailed mechanism underlying this technique and promote its practical application. In this article, a metabolomic study was performed to characterize the global metabolic changes induced by radiation using untreated and 40 Gy (60)Coγ-irradiated testes of Japanese pine sawyer, Monochamus alternatus Hope. Differential metabolites were detected and tentatively identified. Many key metabolites in glycolysis and the tricarboxylic acid cycle, as well as most fatty and amino acids, were elevated in irradiated male M. alternatus, presumably resulting from depression of glycolysis and the tricarboxylic acid cycle, each of which are important pathways for energy generation Adenosine Triphosphate (ATP) in insect spermatozoa. The findings in this article will contribute to our knowledge of the characteristic metabolic changes associated with irradiation sterility and understand the molecular mechanisms underlying radiation-induced sterile insect technique.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Chloroforme, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroforme, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Méthanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Chloroforme, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
Méthanol, anhydrous, 99.8%
Sigma-Aldrich
Chloroforme, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
Méthanol, BioReagent, ≥99.93%
Sigma-Aldrich
Méthanol, Absolute - Acetone free
Sigma-Aldrich
Méthanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
USP
Méthanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Chloroforme, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Supelco
Méthanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroforme, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Adonitol, ≥99%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)