Accéder au contenu
Merck

Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease.

Biochimica et biophysica acta (2014-03-04)
Anna Ferretta, Antonio Gaballo, Paola Tanzarella, Claudia Piccoli, Nazzareno Capitanio, Beatrice Nico, Tiziana Annese, Marco Di Paola, Claudia Dell'aquila, Michele De Mari, Ermanno Ferranini, Vincenzo Bonifati, Consiglia Pacelli, Tiziana Cocco
RÉSUMÉ

Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but the molecular mechanisms controlling these events are not completely understood. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator known as master regulator of mitochondrial functions and oxidative metabolism. Recent studies, including one from our group, have highlighted altered PGC-1α activity and transcriptional deregulation of its target genes in PD pathogenesis suggesting it as a new potential therapeutic target. Resveratrol, a natural polyphenolic compound proved to improve mitochondrial activity through the activation of several metabolic sensors resulting in PGC-1α activation. Here we have tested in vitro the effect of resveratrol treatment on primary fibroblast cultures from two patients with early-onset PD linked to different Park2 mutations. We show that resveratrol regulates energy homeostasis through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) and raise of mRNA expression of a number of PGC-1α's target genes resulting in enhanced mitochondrial oxidative function, likely related to a decrease of oxidative stress and to an increase of mitochondrial biogenesis. The functional impact of resveratrol treatment encompassed an increase of complex I and citrate synthase activities, basal oxygen consumption, and mitochondrial ATP production and a decrease in lactate content, thus supporting a switch from glycolytic to oxidative metabolism. Moreover, resveratrol treatment caused an enhanced macro-autophagic flux through activation of an LC3-independent pathway. Our results, obtained in early-onset PD fibroblasts, suggest that resveratrol may have potential clinical application in selected cases of PD-affected patients.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Resvératrol, ≥99% (HPLC)
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, ≥95% (HPLC)
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, ≥99%
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, Grade AA-1
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 10 mg (per vial)
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, suitable for cell culture, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 50 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 20 mg (per vial)
Supelco
Resvératrol, analytical standard
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, ≥98%, BioUltra, from yeast
Sigma-Aldrich
β-Nicotinamide-adénine-dinucléotide hydrate, purified by column chromatography, ≥99%
Supelco
Resvératrol, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Resvératrol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Anti-acetyl-Lysine Antibody, clone 4G12, clone 4G12, Upstate®, from mouse