Accéder au contenu
Merck
  • Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns.

Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns.

The international journal of esthetic dentistry (2014-04-24)
Abdulaziz M Altamimi, Aris Petros Tripodakis, George Eliades, Hiroshi Hirayama
RÉSUMÉ

To compare the fracture resistance between bilayered zirconia/ fluorapatite and monolithic lithium disilicate heat-pressed crowns and characterize the mode of fracture failure. Thirty crown samples were sequentially fitted on a mandibular right first molar metal replica of an ivory prepared molar tooth. The crown specimens were divided in three groups (A, B, and C; n = 10 for each group). Group A consisted of bilayered zirconia/fluorhapatite pressed-over crowns with standard design crown copings (0.7 mm uniform thickness), Group B of bilayered zirconia/fluorhapatite with anatomical design crown copings, and Group C of lithium disilicate monolithic crowns. The samples were then dynamically loaded under water for 100,000 cycles with a profile of 250 N maximum load at 1,000 N/s rate and 2.0 Hz frequency. Loading was performed with a steel ball (5 mm in diameter) coming into contact with the test crown, loading to maximum, holding for 0.2 s, unloading and lifting off 0.5 mm. The samples were then fractured under static loading, in order to determine the ultimate crown strength. Analysis of the recorded fracture load values was carried out with one-way analysis of variance (ANOVA) followed by Tukey tests. Fractured specimens were examined by stereomicroscopy and scanning electron microscopy. The fracture loads measured were (N, means and standard deviations): Group A: 561.87 (72.63), Group B: 1,014.16 (70.18) and Group C: 1,360.63 (77.95). All mean differences were statistically significant (P < 0.001). Catastrophic fractures occurred in Group C, whereas mainly veneer fractures were observed in Groups A and B. In the present study, the heat-pressed monolithic lithium-disilicate crowns showed more fracture resistance than zirconia/fluorapatite pressed-over crowns. Within the bilayered groups, the anatomical zirconia coping design presented increased ceramic fracture resistance.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Eau, suitable for HPLC
Sigma-Aldrich
Eau, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Eau, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Eau, HPLC Plus
Sigma-Aldrich
Eau, Deionized
Sigma-Aldrich
Eau, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Eau, for molecular biology, sterile filtered
Sigma-Aldrich
Zirconium(IV) oxide, powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
Eau, BioPerformance Certified
Sigma-Aldrich
Zirconium(IV) oxide, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Eau, ACS reagent
Sigma-Aldrich
Eau, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Eau, PCR Reagent
Supelco
Eau, suitable for ion chromatography
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Zirconium(IV) oxide, 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Eau, endotoxin, free
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Supelco
Eau, for TOC analysis
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O
Supelco
Eau, ACS reagent, for ultratrace analysis
Eau, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
Eau, tested according to Ph. Eur.
Zirconium, foil, light tested, 150x150mm, thickness 0.05mm, annealed, 99.2%
Zirconium, sponge, 500g, max. size 25mm, 99.2%
Eau, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C