- Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF.
Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF.
At least six chromatographically resolvable general transcription factors may participate in accurate initiation by RNA polymerase II in HeLa cell-derived systems. TFIIF (also termed FC, RAP30/74 and beta/gamma) can bind directly to RNA polymerase II in solution and decrease the affinity of RNA polymerase II for nonspecific DNA. From studies on the kinetics of transcription initiation, on the composition of transcription initiation complexes fractionated by acrylamide gel electrophoresis, and on template competition experiments, TFIIF is known to act at an intermediate stage in initiation complex formation. It acts after TFIID firmly associates with DNA, but coincidentally with or immediately after RNA polymerase II binding to DNA, and before the recruitment of factor TFIIE. TFIIF may or may not have DNA helicase activity. The small subunit (RAP30) of TFIIF has been cloned and shows some amino-acid sequence homology to bacterial sigma factors. We have partially sequenced the RAP74 protein from purified HeLa cells, cloned its complementary DNA and shown that its translation product can interact with RAP30 in vitro as well as in vivo. The cDNA predicts an amino-acid sequence that lacks obvious DNA or RNA helicase motifs. It has regions rich in charged amino acids, including segments containing a higher content of acidic amino acids than are found in strong transcriptional activators such as VP16.