Accéder au contenu
Merck
  • Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense.

Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense.

The Journal of biological chemistry (2013-05-01)
Joshua D Chandler, David P Nichols, Jerry A Nick, Robert J Hondal, Brian J Day
RÉSUMÉ

The endogenously produced oxidant hypothiocyanous acid (HOSCN) inhibits and kills pathogens but paradoxically is well tolerated by mammalian host tissue. Mammalian high molecular weight thioredoxin reductase (H-TrxR) is evolutionarily divergent from bacterial low molecular weight thioredoxin reductase (L-TrxR). Notably, mammalian H-TrxR contains a selenocysteine (Sec) and has wider substrate reactivity than L-TrxR. Recombinant rat cytosolic H-TrxR1, mouse mitochondrial H-TrxR2, and a purified mixture of both from rat selectively turned over HOSCN (kcat = 357 ± 16 min(-1); Km = 31.9 ± 10.3 μM) but were inactive against the related oxidant hypochlorous acid. Replacing Sec with Cys or deleting the final eight C-terminal peptides decreased affinity and turnover of HOSCN by H-TrxR. Similarly, glutathione reductase (an H-TrxR homologue lacking Sec) was less effective at HOSCN turnover. In contrast to H-TrxR and glutathione reductase, recombinant Escherichia coli L-TrxR was potently inhibited by HOSCN (IC50 = 2.75 μM). Similarly, human bronchial epithelial cell (16HBE) lysates metabolized HOSCN, but E. coli and Pseudomonas aeruginosa lysates had little or no activity. HOSCN selectively produced toxicity in bacteria, whereas hypochlorous acid was nonselectively toxic to both bacteria and 16HBE. Treatment with the H-TrxR inhibitor auranofin inhibited HOSCN metabolism in 16HBE lysates and significantly increased HOSCN-mediated cytotoxicity. These findings demonstrate both the metabolism of HOSCN by mammalian H-TrxR resulting in resistance to HOSCN in mammalian cells and the potent inhibition of bacterial L-TrxR resulting in cytotoxicity in bacteria. These data support a novel selective mechanism of host defense in mammals wherein HOSCN formation simultaneously inhibits pathogens while sparing host tissue.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
L-cystéine, 97%
Sigma-Aldrich
L-cystéine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
L-cystéine, BioUltra, ≥98.5% (RT)
SAFC
L-cystéine
Sigma-Aldrich
L-cystéine hydrochloride monohydrate, Produced by Wacker Chemie AG, Burghausen, Germany, Life Science, 98.5-101.0%
Sigma-Aldrich
L-cystéine, ≥97%, FG
Sigma-Aldrich
L-cystéine hydrochloride monohydrate, BioUltra, ≥99.0% (RT)
Sigma-Aldrich
L-cystéine, produced by Wacker Chemie AG, Burghausen, Germany, ≥98.0%
Sigma-Aldrich
L-cystéine hydrochloride monohydrate, reagent grade, ≥98% (TLC)
Sigma-Aldrich
L-cystéine hydrochloride monohydrate, from non-animal source, suitable for cell culture, meets EP, USP testing specifications
Supelco
L-cystéine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
L-cystéine hydrochloride monohydrate, European Pharmacopoeia (EP) Reference Standard
Supelco
L-cystéine hydrochloride monohydrate, Pharmaceutical Secondary Standard; Certified Reference Material