Accéder au contenu
Merck

H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.

mBio (2013-02-28)
Kyle C Costa, Thomas J Lie, Michael A Jacobs, John A Leigh
RÉSUMÉ

Hydrogenotrophic methanogenic Archaea require reduced ferredoxin as an anaplerotic source of electrons for methanogenesis. H(2) oxidation by the hydrogenase Eha provides these electrons, consistent with an H(2) requirement for growth. Here we report the identification of alternative pathways of ferredoxin reduction in Methanococcus maripaludis that operate independently of Eha to stimulate methanogenesis. A suppressor mutation that increased expression of the glycolytic enzyme glyceraldehyde-3-phosphate:ferredoxin oxidoreductase resulted in a strain capable of H(2)-independent ferredoxin reduction and growth with formate as the sole electron donor. In this background, it was possible to eliminate all seven hydrogenases of M. maripaludis. Alternatively, carbon monoxide oxidation by carbon monoxide dehydrogenase could also generate reduced ferredoxin that feeds into methanogenesis. In either case, the reduced ferredoxin generated was inefficient at stimulating methanogenesis, resulting in a slow growth phenotype. As methanogenesis is limited by the availability of reduced ferredoxin under these conditions, other electron donors, such as reduced coenzyme F(420), should be abundant. Indeed, when F(420)-reducing hydrogenase was reintroduced into the hydrogenase-free mutant, the equilibrium of H(2) production via an F(420)-dependent formate:H(2) lyase activity shifted markedly toward H(2) compared to the wild type. Hydrogenotrophic methanogens are thought to require H(2) as a substrate for growth and methanogenesis. Here we show alternative pathways in methanogenic metabolism that alleviate this H(2) requirement and demonstrate, for the first time, a hydrogenotrophic methanogen that is capable of growth in the complete absence of H(2). The demonstration of alternative pathways in methanogenic metabolism suggests that this important group of organisms is metabolically more versatile than previously thought.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Formate d′ammonium, reagent grade, 97%
Supelco
Formate d′ammonium, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formate d′ammonium, ≥99.995% trace metals basis
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Formate de sodium, ACS reagent, ≥99.0%
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Sigma-Aldrich
Potassium formate, ReagentPlus®, 99%
Sigma-Aldrich
Formate de sodium, reagent grade, 97%
Sigma-Aldrich
Acide formique, ≥95%, FCC, FG
Sigma-Aldrich
Formate de sodium, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Cesium formate, 98%
Sigma-Aldrich
Formate d′ammonium, BioUltra, ≥99.0% (calc. based on dry substance, NT)
Sigma-Aldrich
Formate de sodium, 99.998% trace metals basis
Sigma-Aldrich
Sodium formate-13C, 99 atom % 13C
Sigma-Aldrich
Calcium formate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Acide formique solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Potassium formate, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Thallium(I) formate, 97%
Supelco
Calcium formate, Standard for quantitative NMR, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland