Accéder au contenu
Merck

Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.

Journal of physics. Condensed matter : an Institute of Physics journal (2012-12-14)
H Dixit, D Lamoen, B Partoens
RÉSUMÉ

CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cadmium oxide, ≥99.99% trace metals basis
Sigma-Aldrich
Cadmium oxide, powder, 99.5% trace metals basis