Accéder au contenu
Merck

Mechanism of melibiose/cation symport of the melibiose permease of Salmonella typhimurium.

The Journal of biological chemistry (2010-12-15)
Lan Guan, Shailika Nurva, Siva P Ankeshwarapu
RÉSUMÉ

The MelB permease of Salmonella typhimurium (MelB-ST) catalyzes the coupled symport of melibiose and Na(+), Li(+), or H(+). In right-side-out membrane vesicles, melibiose efflux is inhibited by an inwardly directed gradient of Na(+) or Li(+) and stimulated by equimolar concentrations of internal and external Na(+) or Li(+). Melibiose exchange is faster than efflux in the presence of H(+) or Na(+) and stimulated by an inwardly directed Na(+) gradient. Thus, sugar is released from MelB-ST externally prior to the release of cation in agreement with current models proposed for MelB of Escherichia coli (MelB-EC) and LacY. Although Li(+) stimulates efflux, and an outwardly directed Li(+) gradient increases exchange, it is striking that internal and external Li(+) with no gradient inhibits exchange. Furthermore, Trp → dansyl FRET measurements with a fluorescent sugar (2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside) demonstrate that MelB-ST, in the presence of Na(+) or Li(+), exhibits (app)K(d) values of ∼1 mM for melibiose. Na(+) and Li(+) compete for a common binding pocket with activation constants for FRET of ∼1 mM, whereas Rb(+) or Cs(+) exhibits little or no effect. Taken together, the findings indicate that MelB-ST utilizes H(+) in addition to Na(+) and Li(+). FRET studies also show symmetrical emission maximum at ∼500 nm with MelB-ST in the presence of 2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside and Na(+), Li(+), or H(+), which implies a relatively homogeneous distribution of conformers of MelB-ST ternary complexes in the membrane.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Melibiose, ≥98% (HPLC)
Millipore
D-(+)-Melibiose, suitable for microbiology, ≥99.0%