Accéder au contenu
Merck

Effects of tert-butyl acetate on maternal toxicity and embryo-fetal development in Sprague-Dawley rats.

Birth defects research. Part B, Developmental and reproductive toxicology (2007-10-20)
Y S Yang, T H Ahn, J C Lee, C J Moon, S H Kim, S C Park, Y H Chung, H Y Kim, J C Kim
RÉSUMÉ

This study investigated the potential adverse effects of tert-butyl acetate (TBAc) on maternal toxicity and embryo-fetal development after maternal exposure of pregnant rats from gestational days 6 through 19. TBAc was administered to pregnant rats by gavage at 0, 400, 800, and 1,600 mg/kg/day. All dams were subjected to a Caesarean section on day 20 of gestation, and their fetuses were examined for any morphological abnormalities. At 1,600 mg/kg, maternal toxicity manifested as increases in the incidence of clinical signs and death, lower body weight gain and food intake, increases in the weights of adrenal glands and liver, and a decrease in thymus weight. Developmental toxicity included a decrease in fetal weight, an increase in the incidence of skeletal variation, and a delay in fetal ossification. At 800 mg/kg, only a minimal developmental toxicity, including an increase in the incidence of skeletal variation and a delay in fetal ossification, were observed. In contrast, no adverse maternal or developmental effects were observed at 400 mg/kg. These results show that a 14-day repeated oral dose of TBAc is embryotoxic at a maternally toxic dose (i.e., 1,600 mg/kg/day) and is minimally embryotoxic at a nonmaternally toxic dose (i.e., 800 mg/kg/day) in rats. However, no evidence for the teratogenicity of TBAc was noted in rats. It is concluded that the developmental findings observed in the present study are secondary effects to maternal toxicity. Under these experimental conditions, the no-observed-adverse-effect level of TBAc is considered to be 800 mg/kg/day for dams and 400 mg/kg/day for embryo-fetal development.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
tert-Butyl acetate, ≥99%