Accéder au contenu
Merck

The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis.

Journal of experimental botany (2013-01-26)
Shunsuke Adachi, Toru Nakae, Masaki Uchida, Kazuya Soda, Toshiyuki Takai, Takao Oi, Toshio Yamamoto, Taiichiro Ookawa, Hiroshi Miyake, Masahiro Yano, Tadashi Hirasawa
RÉSUMÉ

Increases in rates of individual leaf photosynthesis (P(n)) are critical for future increases in yields of rice plants. Although many efforts have been made to improve rice P(n) with transgenic technology, the desired increases in P(n) have not yet been achieved. Two rice lines with extremely high values of P(n) were identified among the backcrossed inbred lines derived from the indica variety Takanari, one of the most productive varieties in Japan, and the elite japonica variety Koshihikari (Koshihikari/Takanari//Takanari). The P(n) values of the two lines at an ambient CO(2) concentration of 370μmol mol(-1) as well as at a saturating concentration of CO(2) were 20-50% higher than those of the parental varieties. Compared with Takanari, these lines had neither a higher content nor a higher activity of ribulose 1,5-bisphosphate carboxylase/oxygenase when the leaf nitrogen contents were similar, but they did have high mesophyll conductance with respect to CO(2) flux due to their higher density and more highly developed lobes of mesophyll cells. These lines also had higher electron transport rates. The plant growth rates of these lines were higher than that of Takanari. The findings show that it is possible to increase P(n) significantly, both at the current atmospheric concentration of CO(2) and at the increased concentration of CO(2) expected in the future, using appropriate combinations of genetic resources that are available at present.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
D-Ribulose 1,5-Diphosphate Carboxylase from spinach, partially purified powder, 0.01-0.1 unit/mg solid