Accéder au contenu
Merck

Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance.

Nature communications (2023-08-30)
Reyaz Ur Rasool, Caitlin M O'Connor, Chandan Kanta Das, Mohammed Alhusayan, Brijesh Kumar Verma, Sehbanul Islam, Ingrid E Frohner, Qu Deng, Erick Mitchell-Velasquez, Jaya Sangodkar, Aqila Ahmed, Sarah Linauer, Ingrid Mudrak, Jessica Rainey, Kaitlin P Zawacki, Tahra K Suhan, Catherine G Callahan, Ryan Rebernick, Ramakrishnan Natesan, Javed Siddiqui, Guido Sauter, Dafydd Thomas, Shaomeng Wang, Derek J Taylor, Ronald Simon, Marcin Cieslik, Arul M Chinnaiyan, Luca Busino, Egon Ogris, Goutham Narla, Irfan A Asangani
RÉSUMÉ

Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the β-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, ≥98% (TLC)
Sigma-Aldrich
mTOR Inhibitor XI, Torin1, mTOR Inhibitor XI, Torin1, CAS 1222998-36-8, is a cell-permeable, highly potent, ATP-competitive inhibitor of mTOR and DNA-PK (IC50 = 4.32 and 6.34 nM, respectively).
Sigma-Aldrich
NAE Inhibitor, MLN4924
Supelco
Rapamycin, VETRANAL®, analytical standard