Accéder au contenu
Merck
  • Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres.

Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres.

Mikrochimica acta (2020-08-05)
Dongmiao Qin, Xiaohua Jiang, Guichun Mo, Xiangfei Zheng, Biyang Deng
RÉSUMÉ

A composite, reduced graphene oxide (rGO) doped with silver nanoparticles (Ag NPs), was prepared by using binary reductants of sodium citrate and hydrazine hydrate. Carbon quantum dots (CQDs) synthesized by papaya peel combined with silver ions to form a CQDs-loaded silver nanoparticle (AgCQDs) nanocomposite. Polymer nanospheres (PNS) were generated via the infinite coordination polymer of ferrocene dicarboxylic acid and employed as carriers to load AgCQDs. The prepared AgCQDs@PNS-PEI has good biocompatibility and electrical conductivity and can be used as a matrix for the immobilization of a secondary antibody (Ab2). A sandwich-type electrochemiluminescence (ECL) immunosensor using AgCQDs@PNS-PEI nanocomposite as probe has been developed for the detection of human chorionic gonadotropin (HCG). The proposed immunosensor exhibits a linear range from 0.00100 to 500 mIU mL-1 and the detection limit is 0.33 μIU mL-1 (S/N = 3) under optimal conditions. The sensor exhibits excellent selectivity, good reproducibility, and high stability. These features demonstrate that the proposed method has promising potential for clinical protein detection and displays a new strategy to fabricate an immunosensor. Graphical abstract.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide, ≥97.0% (T)