Accéder au contenu
Merck

A novel combinatorial approach to high-density peptide arrays.

Methods in molecular biology (Clifton, N.J.) (2009-08-04)
Mario Beyer, Ines Block, Kai König, Alexander Nesterov, Simon Fernandez, Thomas Felgenhauer, Christopher Schirwitz, Klaus Leibe, Ralf F Bischoff, Frank Breitling, Volker Stadler
RÉSUMÉ

Combinatorial synthesis of peptides on solid supports (1), either as spots on cellulose membranes (2) or with split-pool-libraries on polymer beads (3), substantially forwarded research in the field of peptide-protein interactions. Admittedly, these concepts have specific limitations, on one hand the number of synthesizable peptide sequences per area, on the other hand elaborate decoding/encoding strategies, false-positive results and sequence limitations. We recently established a method to produce high-density peptide arrays on microelectronic chips (4). Solid amino acid microparticles were charged by friction and transferred to defined pixel electrodes onto the chip's surface, where they couple to a functional polymer coating simply upon melting (Fig. 16.1 A-D,F). By applying standard Fmoc chemistry according to Merrifield, peptide array densities of up to 40,000 spots per square centimetre were achieved (Fig. 16.1G). The term "Merrifield synthesis" describes the consecutive linear coupling and deprotecting of L-amino acids modified with base-labile fluorenylmethoxy (Fmoc) groups at the N-terminus and different acid-sensitive protecting groups at their side chains. Removing side chain protecting groups takes place only once at the very end of each synthesis and generates the natural peptide sequence thereby.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
O-Methyl-O′-succinylpolyethylene glycol 5′000