- Polypropylene Glycol-Polyoxytetramethylene Glycol Multiblock Copolymers with High Molecular Weight: Synthesis, Characterization, and Silanization.
Polypropylene Glycol-Polyoxytetramethylene Glycol Multiblock Copolymers with High Molecular Weight: Synthesis, Characterization, and Silanization.
The high crystallization at room temperature and high cost of polyoxytetramethylene glycol (PTMG) have become obstacles to its application. To overcome these problems, a segment of PTMG can be incorporated into a block copolymer. In this work, polypropylene (PPO) glycol-polyoxytetramethylene (PPO-PTMG) multiblock copolymers were designed and synthesized through a chain extension between hydroxyl (OH)-terminated PPO and PTMG oligomers. The chain extenders, feed ratios of the catalyst/chain extender/OH groups, reaction temperature, and time were optimized several times to obtain a PPO-PTMG with low crystallization and high molecular weight. Multiblock copolymers with low crystallization and high average molecular weight (Mn = 1.0-1.4 × 104 Dalton) were harvested using m-phthaloyl chloride as the chain extender. The OH-terminated PPO-PTMG multiblock copolymer with high Mn and a functionality near two was further siliconized by 3-isocyanatopropyltrimethoxysilane to synthesize a novel silyl-terminated polyether. This polyether has an appropriate vulcanizing property and potential applications in sealants/adhesive fields.