Accéder au contenu
Merck

Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma.

Investigative ophthalmology & visual science (2009-04-10)
Natalie D Bull, Karen-Amanda Irvine, Robin J M Franklin, Keith R Martin
RÉSUMÉ

Glaucoma is a common neurodegenerative disease for which current therapies are often insufficient; thus, new neuroprotective strategies are an important goal. Stem cells are attracting increasing attention as mediators of neuroprotection, often conferred via the trophic support of injured neurons. The purpose of our investigation was to determine whether oligodendrocyte precursor cells (OPCs), a type of neural stem cell, can protect retinal ganglion cells (RGCs) from glaucomatous damage in vivo. Intraocular pressure was chronically increased by trabecular laser treatment delivered unilaterally to adult rat eyes. OPCs were isolated in vitro and then transplanted intravitreally either before, or concurrent with, injury induction. Survival, migration, differentiation, and integration of grafted cells were assessed by immunohistochemistry. RGC survival was assessed by optic nerve axon quantification. Transplanted OPCs were found to survive within the eye for at least 12 weeks and to localize close to the RGCs. Moreover, OPCs significantly enhanced the survival of RGCs in the glaucomatous eye, but only when concomitantly activated by inflammation. Axonal loss relative to the untreated fellow eye was 28.34% +/- 11.51% in eyes that received activated OPCs, compared with 60.34% +/- 8.28% in control eyes (mean +/- SEM; P = 0.05). Amelioration of RGC death was not attributable to inflammation but relied on an interaction between inflammatory cells and OPCs. Engrafted cells also displayed multipotentiality in vivo. The impressive neuroprotection conferred by OPCs in this model suggests stem cell-based therapies should be explored further as a potential treatment for glaucoma.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-protéine acide fibrillaire gliale (GFAP) antibody produced in mouse, clone G-A-5, purified from hybridoma cell culture
Sigma-Aldrich
Anti-A2B5 Antibody, clone A2B5-105, clone A2B5-105, Chemicon®, from mouse