Accéder au contenu
Merck

Human-like smelling of a rose scent using an olfactory receptor nanodisc-based bioelectronic nose.

Scientific reports (2018-09-19)
Minju Lee, Heehong Yang, Daesan Kim, Myungjae Yang, Tai Hyun Park, Seunghun Hong
RÉSUMÉ

We report a strategy for the human-like smelling of a rose scent utilizing olfactory receptor nanodisc (ND)-based bioelectronic nose devices. In this strategy, a floating electrode (FE)-based carbon nanotube (CNT) field effect transistor (FET) was functionalized with human olfactory receptor 1A2 (hOR1A2)-embedded NDs (hOR1A2NDs). The hOR1A2NDs responded to rose scent molecules specifically, which were monitored electrically using the underlying CNT-FET. This strategy allowed us to quantitatively assess the contents of geraniol and citronellol, the main components of a rose scent, as low as 1 fM and 10 fM, respectively. In addition, it enabled us to selectively discriminate a specific rose odorant from other odorants. Significantly, we also demonstrated that the responses of hOR1A2NDs to a rose scent could be strongly enhanced by enhancer materials like a human nose. Furthermore, the method provided a means to quantitatively evaluate rose scent components in real samples such as rose oil. Since our method allows one to quantitatively evaluate general rose scent ingredients just like a human nose, it could be a powerful strategy for versatile basic research and various applications such as fragrance development.