Accéder au contenu
Merck

Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1.

Journal of the American Chemical Society (2015-03-19)
Changwook Lee, Hye-Kyung Park, Hanbin Jeong, Jaehwa Lim, An-Jung Lee, Keun Young Cheon, Chul-Su Kim, Ajesh P Thomas, Boram Bae, Nam Doo Kim, Seong Heon Kim, Pann-Ghill Suh, Ja-Hyoung Ryu, Byoung Heon Kang
RÉSUMÉ

The mitochondrial pool of Hsp90 and its mitochondrial paralogue, TRAP1, suppresses cell death and reprograms energy metabolism in cancer cells; therefore, Hsp90 and TRAP1 have been suggested as target proteins for anticancer drug development. Here, we report that the actual target protein in cancer cell mitochondria is TRAP1, and current Hsp90 inhibitors cannot effectively inactivate TRAP1 because of their insufficient accumulation in the mitochondria. To develop mitochondrial TRAP1 inhibitors, we determined the crystal structures of human TRAP1 complexed with Hsp90 inhibitors. The isopropyl amine of the Hsp90 inhibitor PU-H71 was replaced with the mitochondria-targeting moiety triphenylphosphonium to produce SMTIN-P01. SMTIN-P01 showed a different mode of action from the nontargeted PU-H71, as well as much improved cytotoxicity to cancer cells. In addition, we determined the structure of a TRAP1-adenylyl-imidodiphosphate (AMP-PNP) complex. On the basis of comparative analysis of TRAP1 structures, we propose a molecular mechanism of ATP hydrolysis that is crucial for chaperone function.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
(6-Bromohexyl)triphenylphosphonium bromide, ≥95%