Accéder au contenu
Merck

Cancer Lipid Metabolism Confers Antiangiogenic Drug Resistance.

Cell metabolism (2018-06-05)
Hideki Iwamoto, Mitsuhiko Abe, Yunlong Yang, Dongmei Cui, Takahiro Seki, Masaki Nakamura, Kayoko Hosaka, Sharon Lim, Jieyu Wu, Xingkang He, Xiaoting Sun, Yongtian Lu, Qingjun Zhou, Weiyun Shi, Takuji Torimura, Guohui Nie, Qi Li, Yihai Cao
RÉSUMÉ

Intrinsic and evasive antiangiogenic drug (AAD) resistance is frequently developed in cancer patients, and molecular mechanisms underlying AAD resistance remain largely unknown. Here we describe AAD-triggered, lipid-dependent metabolic reprogramming as an alternative mechanism of AAD resistance. Unexpectedly, tumor angiogenesis in adipose and non-adipose environments is equally sensitive to AAD treatment. AAD-treated tumors in adipose environment show accelerated growth rates in the presence of a minimal number of microvessels. Mechanistically, AAD-induced tumor hypoxia initiates the fatty acid oxidation metabolic reprogramming and increases uptake of free fatty acid (FFA) that stimulates cancer cell proliferation. Inhibition of carnitine palmitoyl transferase 1A (CPT1) significantly compromises the FFA-induced cell proliferation. Genetic and pharmacological loss of CPT1 function sensitizes AAD therapeutic efficacy and enhances its anti-tumor effects. Together, we propose an effective cancer therapy concept by combining drugs that target angiogenesis and lipid metabolism.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cocktail d'inhibiteurs de protéases, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
MISSION® esiRNA, targeting human CPT1A