Skip to Content
Merck
  • Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment.

Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment.

Blood (2017-01-05)
Manar S Shafat, Thomas Oellerich, Sebastian Mohr, Stephen D Robinson, Dylan R Edwards, Christopher R Marlein, Rachel E Piddock, Matthew Fenech, Lyubov Zaitseva, Amina Abdul-Aziz, Jeremy Turner, Johnathan A Watkins, Matthew Lawes, Kristian M Bowles, Stuart A Rushworth
ABSTRACT

Despite currently available therapies, most patients diagnosed with acute myeloid leukemia (AML) die of their disease. Tumor-host interactions are critical for the survival and proliferation of cancer cells; accordingly, we hypothesize that specific targeting of the tumor microenvironment may constitute an alternative or additional strategy to conventional tumor-directed chemotherapy. Because adipocytes have been shown to promote breast and prostate cancer proliferation, and because the bone marrow adipose tissue accounts for up to 70% of bone marrow volume in adult humans, we examined the adipocyte-leukemia cell interactions to determine if they are essential for the growth and survival of AML. Using in vivo and in vitro models of AML, we show that bone marrow adipocytes from the tumor microenvironment support the survival and proliferation of malignant cells from patients with AML. We show that AML blasts alter metabolic processes in adipocytes to induce phosphorylation of hormone-sensitive lipase and consequently activate lipolysis, which then enables the transfer of fatty acids from adipocytes to AML blasts. In addition, we report that fatty acid binding protein-4 (FABP4) messenger RNA is upregulated in adipocytes and AML when in coculture. FABP4 inhibition using FABP4 short hairpin RNA knockdown or a small molecule inhibitor prevents AML proliferation on adipocytes. Moreover, knockdown of FABP4 increases survival in Hoxa9/Meis1-driven AML model. Finally, knockdown of carnitine palmitoyltransferase IA in an AML patient-derived xenograft model improves survival. Here, we report the first description of AML programming bone marrow adipocytes to generate a protumoral microenvironment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Insulin solution human, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
MISSION® esiRNA, targeting human FABP4
Sigma-Aldrich
Fluoromount Aqueous Mounting Medium, for use with fluorescent dye-stained tissues
Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
3-Isobutyl-1-methylxanthine, ≥99%, BioUltra