Skip to Content
Merck
  • Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach.

Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach.

Genome biology (2015-04-09)
Andrés Castellanos-Martín, Sonia Castillo-Lluva, María Del Mar Sáez-Freire, Adrián Blanco-Gómez, Lourdes Hontecillas-Prieto, Carmen Patino-Alonso, Purificación Galindo-Villardon, Luis Pérez Del Villar, Carmen Martín-Seisdedos, María Isidoro-Garcia, María Del Mar Abad-Hernández, Juan Jesús Cruz-Hernández, César Augusto Rodríguez-Sánchez, Rogelio González-Sarmiento, Diego Alonso-López, Javier De Las Rivas, Begoña García-Cenador, Javier García-Criado, Do Yup Lee, Benjamin Bowen, Wolfgang Reindl, Trent Northen, Jian-Hua Mao, Jesús Pérez-Losada
ABSTRACT

An essential question in cancer is why individuals with the same disease have different clinical outcomes. Progress toward a more personalized medicine in cancer patients requires taking into account the underlying heterogeneity at different molecular levels. Here, we present a model in which there are complex interactions at different cellular and systemic levels that account for the heterogeneity of susceptibility to and evolution of ERBB2-positive breast cancers. Our model is based on our analyses of a cohort of mice that are characterized by heterogeneous susceptibility to ERBB2-positive breast cancers. Our analysis reveals that there are similarities between ERBB2 tumors in humans and those of backcross mice at clinical, genomic, expression, and signaling levels. We also show that mice that have tumors with intrinsically high levels of active AKT and ERK are more resistant to tumor metastasis. Our findings suggest for the first time that a site-specific phosphorylation at the serine 473 residue of AKT1 modifies the capacity for tumors to disseminate. Finally, we present two predictive models that can explain the heterogeneous behavior of the disease in the mouse population when we consider simultaneously certain genetic markers, liver cell signaling and serum biomarkers that are identified before the onset of the disease. Considering simultaneously tumor pathophenotypes and several molecular levels, we show the heterogeneous behavior of ERBB2-positive breast cancer in terms of disease progression. This and similar studies should help to better understand disease variability in patient populations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic anhydride, Arxada quality, ≥99.5% (GC)
SAFC
Cholesterol, Plant-Derived, SyntheChol®
Sigma-Aldrich
DL-Alanine, ≥99%, FCC, FG
Supelco
Pyridine, analytical standard
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Supelco
Acetic anhydride, for GC derivatization, LiChropur, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Acetic anhydride, ReagentPlus®, ≥99%
Sigma-Aldrich
Chlorotrimethylsilane solution, 1.0 M in THF
Sigma-Aldrich
Acetic anhydride, ACS reagent, ≥98.0%
Sigma-Aldrich
Acetic anhydride, 99.5%
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
DL-Alanine, ≥99% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Creatinine, anhydrous, ≥98%
Sigma-Aldrich
Uric acid, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture