- Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo.
Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo.
We have identified two compounds that inhibit the expression of endothelial-leukocyte adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin. These compounds act by inhibiting tumor necrosis factor-alpha-induced phosphorylation of IkappaB-alpha, resulting in decreased nuclear factor-kappaB and decreased expression of adhesion molecules. The effects on both IkappaB-alpha phosphorylation and surface expression of E-selectin were irreversible and occurred at an IC50 of approximately 10 microM. These agents selectively and irreversibly inhibited the tumor necrosis factor-alpha-inducible phosphorylation of IkappaB-alpha without affecting the constitutive IkappaB-alpha phosphorylation. Although these compounds exhibited other activities, including stimulation of the stress-activated protein kinases, p38 and JNK-1, and activation of tyrosine phosphorylation of a 130-140-kDa protein, these effects are probably distinct from the effects on adhesion molecule expression since they were reversible. One compound was evaluated in vivo and shown to be a potent anti-inflammatory drug in two animal models of inflammation. The compound reduced edema formation in a dose-dependent manner in the rat carrageenan paw edema assay and reduced paw swelling in a rat adjuvant arthritis model. These studies suggest that inhibitors of cytokine-inducible IkappaBalpha phosphorylation exert anti-inflammatory activity in vivo.