Direkt zum Inhalt
Merck
  • How to distinguish between different cell lineages sharing common markers using combinations of double in-situ-hybridization and immunostaining in avian embryos: CXCR4-positive mesodermal and neural crest-derived cells.

How to distinguish between different cell lineages sharing common markers using combinations of double in-situ-hybridization and immunostaining in avian embryos: CXCR4-positive mesodermal and neural crest-derived cells.

Histochemistry and cell biology (2020-10-11)
Imadeldin Yahya, Marion Böing, Beate Brand-Saberi, Gabriela Morosan-Puopolo
ZUSAMMENFASSUNG

Cell migration plays a crucial role in early embryonic development. The chemokine receptor CXCR4 has been reported to guide migration of neural crest cells (NCCs) to form the dorsal root ganglia (DRG) and sympathetic ganglia (SG). CXCR4 also plays an important part during the formation of limb and cloacal muscles. NCCs migration and muscle formation during embryonic development are usually considered separately, although both cell lineages migrate in close neighbourhood and have markers in common. In this study, we present a new method for the simultaneous detection of CXCR4, mesodermal markers and NCCs markers during chicken embryo developmental stages HH18-HH25 by combining double whole-mount in situ hybridization (ISH) and immunostaining on floating vibratome sections. The simultaneous detection of CXCR4 and markers for the mesodermal and neural crest cells in multiple labelling allowed us to compare complex gene expression patterns and it could be easily used for a wide range of gene expression pattern analyses of other chicken embryonic tissues. All steps of the procedure, including the preparation of probes and embryos, prehybridization, hybridization, visualization of the double labelled transcripts and immunostaining, are described in detail.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Roche
Anti-Digoxigenin-AP, Fab-Fragmente, from sheep
Sigma-Aldrich
Monoclonal Anti-FITC−Alkaline Phosphatase antibody produced in mouse, clone FL-D6, purified immunoglobulin, buffered aqueous solution