Direkt zum Inhalt
Merck

Tools for engineering coordinated system behaviour in synthetic microbial consortia.

Nature communications (2018-07-12)
Nicolas Kylilis, Zoltan A Tuza, Guy-Bart Stan, Karen M Polizzi
ZUSAMMENFASSUNG

Advancing synthetic biology to the multicellular level requires the development of multiple cell-to-cell communication channels that propagate information with minimal signal interference. The development of quorum-sensing devices, the cornerstone technology for building microbial communities with coordinated system behaviour, has largely focused on cognate acyl-homoserine lactone (AHL)/transcription factor pairs, while the use of non-cognate pairs as a design feature has received limited attention. Here, we demonstrate a large library of AHL-receiver devices, with all cognate and non-cognate chemical signal interactions quantified, and we develop a software tool that automatically selects orthogonal communication channels. We use this approach to identify up to four orthogonal channels in silico, and experimentally demonstrate the simultaneous use of three channels in co-culture. The development of multiple non-interfering cell-to-cell communication channels is an enabling step that facilitates the design of synthetic consortia for applications including distributed bio-computation, increased bioprocess efficiency, cell specialisation and spatial organisation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
N-(3-Oxododecanoyl)-L-homoserine lactone, quorum sensing signaling molecule
Sigma-Aldrich
N-(3-Oxooctanoyl)-L-homoserine lactone, ≥97% (HPLC), white, powder
Sigma-Aldrich
N-(3-Hydroxy-tetradecanoyl)-DL-homoserin-lacton, ≥96% (HPLC), carbon 64.7-67.3 %
Sigma-Aldrich
N-(p-Coumaroyl)-L-homoserin-lacton, ≥94% (HPLC)