Accéder au contenu
Merck

Cobalt-Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction.

ChemSusChem (2017-06-20)
Sujin Kim, Dawoon Jang, Joonwon Lim, Junghoon Oh, Sang Ouk Kim, Sungjin Park
RÉSUMÉ

Hybrid systems in which molecule-based active species are combined with nanoscale materials may offer valuable routes to enhance catalytic performances for electrocatalytic reactions. The development of rationally designed, cost-effective, efficient catalysts for the oxygen reduction reaction (ORR) is a crucial challenge for applications in fuel cells and metal-air batteries. A new hybrid ORR catalyst has been synthesized through a well-defined reaction between Co-based organometallic molecules and N-doped multiwalled carbon nanotubes (MWCNTs) at room temperature. The hybrid ORR catalyst shows excellent catalytic performance with an onset potential of 0.95 V [vs. the reversible hydrogen electrode (RHE)], superior durability, and good methanol tolerance. Chemical and structural characterization after many reaction cycles reveals that the Co-based organometallic species maintained the original structure of cobalt(II) acetylacetonate with coordination to the heteroatoms of the MWCNTs. A thorough electrochemical investigation indicates that the major catalytically active site is Co-O

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cobalt(II) acetylacetonate, 97%