Accéder au contenu
Merck

Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization.

Langmuir : the ACS journal of surfaces and colloids (2013-02-20)
Xiaojuan Bai, Li Wang, Ruilong Zong, Yanhui Lv, Yiqing Sun, Yongfa Zhu
RÉSUMÉ

ZnO1-x/graphene hybrid photocatalyst was prepared via a facile in-situ reduction of graphene oxide and ZnO1-x surface defect oxide. The hybrid photocatlayst showed enhanced photocatalytic activity for the photodegradation of methylene blue. The photocorrosion of ZnO1-x was successfully inhibited by graphene hybridation. ZnO1-x/graphene hybrid photocatalyst with 1.2 wt % graphene showed the optimized photocatalytic activity. The photocatalytic activity of ZnO1-x/graphene-1.2 wt % under visible and UV light was about 4.6 and 1.2 times that of ZnO1-x sample, respectively. The photocurrent intensity of ZnO1-x under visible and UV light irradiation can be enhanced by 2 and 3.5 times by graphene hybridization. The enhancement of photocatalytic activity and photocurrent intensity in ZnO1-x/graphene was attributed to the synergistic effect between graphene and ZnO1-x for high separation efficiency of photoinduced electron-hole pairs mainly resulting from the promotion of HOMO orbit of graphene and the Oi″ defect level of ZnO1-x in ZnO1-x/graphene.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Methylene Blue solution, for microscopy, concentrate according to Ehrlich, concentrated, aqueous solution
Sigma-Aldrich
Methylene Blue solution, for microscopy
Sigma-Aldrich
Methylene Blue solution, suitable for microbiology