Accéder au contenu
Merck

Quinolizidinyl derivatives of iminodibenzyl and phenothiazine as multidrug resistance modulators in ovarian cancer cells.

Investigational new drugs (2003-10-31)
Federica Barbieri, Angela Alama, Bruno Tasso, Vito Boido, Cristina Bruzzo, Fabio Sparatore
RÉSUMÉ

The development of multidrug-resistance (MDR) in neoplastic cells is often responsible for the therapy failure and poor outcome of a number of human cancers. MDR may be associated with the expression of the multidrug transporter glycoprotein p170, encoded by the MDR1 gene, which acts as an ATP-dependent efflux pump by reducing the intracellular accumulation of some cytotoxic agents. A variety of iminodibenzyl and phenothiazine derivatives, characterized by the presence of a bicyclic, strongly basic, and highly lipophilic quinolizidine nucleus, were synthesized to investigate their ability to modulate the MDR phenotype. A set of 10 of them (named 1-10), bearing quinolizidine moiety linked through different connecting chains, were tested as chemoresistance-reversing agents on doxorubicin-resistant ovarian cancer cells (A2780-DX3). A 51-fold resistance to doxorubicin was reported in the A2780-DX3 compared to the parental sensitive A2780 WT with mean IC(50) values of 0.02 and 1.02 muM, respectively. Moreover, overexpression of the glycoprotein p170 in the resistant cell line was detected by Western blot analysis. By cytotoxicity assays and time-course experiments, different treatment schedules with resistance modulators (including clomipramine as reference drug) and doxorubicin were taken into account. The 16 h exposure of cells to 1 muM of modulator before doxorubicin demonstrated to be superior in sensitizing the resistant cell line. In particular, compounds 8, 7, 10, and 4 increasingly potentiated doxorubicin cytotoxicity, up to 5.6-fold in A2780-DX3 cells. The present results suggest promising indications for further development of these compounds as chemosensitizing drugs.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Dibenzylamine, 97%