Accéder au contenu
Merck

Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy.

Proceedings of the National Academy of Sciences of the United States of America (2013-11-06)
Zhenxi Zhang, Anna Maria Pinto, Lili Wan, Wei Wang, Michael G Berg, Isabela Oliva, Larry N Singh, Christopher Dengler, Zhi Wei, Gideon Dreyfuss
RÉSUMÉ

The motor neuron (MN) degenerative disease, spinal muscular atrophy (SMA) is caused by deficiency of SMN (survival motor neuron), a ubiquitous and indispensable protein essential for biogenesis of snRNPs, key components of pre-mRNA processing. However, SMA's hallmark MN pathology, including neuromuscular junction (NMJ) disruption and sensory-motor circuitry impairment, remains unexplained. Toward this end, we used deep RNA sequencing (RNA-seq) to determine if there are any transcriptome changes in MNs and surrounding spinal cord glial cells (white matter, WM) microdissected from SMN-deficient SMA mouse model at presymptomatic postnatal day 1 (P1), before detectable MN pathology (P4-P5). The RNA-seq results, previously unavailable for SMA at any stage, revealed cell-specific selective mRNA dysregulations (~300 of 11,000 expressed genes in each, MN and WM), many of which are known to impair neurons. Remarkably, these dysregulations include complete skipping of agrin's Z exons, critical for NMJ maintenance, strong up-regulation of synapse pruning-promoting complement factor C1q, and down-regulation of Etv1/ER81, a transcription factor required for establishing sensory-motor circuitry. We propose that dysregulation of such specific MN synaptogenesis genes, compounded by many additional transcriptome abnormalities in MNs and WM, link SMN deficiency to SMA's signature pathology.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Complement component C1q from human serum, ≥95% (SDS-PAGE)
Sigma-Aldrich
Anti-Agrin Antibody, Chemicon®, from mouse