Accéder au contenu
Merck

Neuroleptics of the diphenylbutylpiperidine series are potent calcium channel inhibitors.

Proceedings of the National Academy of Sciences of the United States of America (1986-10-01)
J P Galizzi, M Fosset, G Romey, P Laduron, M Lazdunski
RÉSUMÉ

[3H]Fluspirilene, a neuroleptic molecule of the diphenylbutylpiperidine series, binds to skeletal muscle transverse tubule membranes with a high affinity corresponding to a Kd of 0.11 +/- 0.04 nM, A 1:1 stoichiometry was found between [3H]fluspirilene binding and the binding of (-)-[3H]desmethoxyverapamil [(-)[3H]D888], one of the most potent Ca2+ channel inhibitors. Ca2+ channel inhibitors such as D888, verapamil, gallopamil, bepridil, or diltiazem antagonize [3H]fluspirilene binding besides antagonizing (-)[3H]-D888 binding. Neuroleptics, especially those of the diphenylbutylpiperidine family, also antagonize both (-)[3H]D888 binding and [3H]fluspirilene binding. There is an excellent correlation between affinities found from [3H]fluspirilene binding experiments and those found from (-)[3H]D888 binding experiments. Analysis of the properties of these cross-inhibitions indicates that [3H]fluspirilene binds to a site that is not identical to that for phenylalkylamine derivatives (gallopamil, verapamil, diltiazem, and bepridil). Voltage-clamp experiments have shown that fluspirilene is an efficient inhibitor of the voltage dependent Ca2+ channel, achieving a half-maximal effect near 0.1-0.2 nM and nearly complete blockade at 1 nM. Fluspirilene blockade has little voltage dependence.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Fluspirilene