Accéder au contenu
Merck

Recyclable Organocatalyzed Poly(Thiourethane) Covalent Adaptable Networks.

Polymers (2020-12-10)
Francesco Gamardella, Sara Muñoz, Silvia De la Flor, Xavier Ramis, Angels Serra
RÉSUMÉ

A new type of tetraphenylborate salts derived from highly basic and nucleophilic amines, namely 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and triazabicyclodecene (TBD), was applied to the preparation of networked poly(thiourethane)s (PTUs), which showed a vitrimer-like behavior, with higher stress-relaxation rates than PTUs prepared by using dibutyl thin dilaurate (DBTDL) as the catalyst. The use of these salts, which release the amines when heated, instead of the pure amines, allows the formulation to be easily manipulated to prepare any type of samples. The materials prepared from stoichiometric mixtures of hexamethylene diisocyanate (HDI), trithiol (S3) and with a 10% of molar excess of isocyanate or thiol were characterized by FTIR, thermomechanical analysis, thermogravimetry, stress-relaxation tests and tensile tests, thus obtaining a complete thermal and mechanical characterization of the materials. The recycled materials obtained by grinding the original PTUs and hot-pressing the small pieces in the optimized time and temperature conditions were fully characterized by mechanical, thermomechanical and FTIR studies. This allowed us to confirm their recyclability, without appreciable changes in the network structure and performance. From several observations, the dissociative interchange trans-thiocarbamoylation mechanism was evidenced as the main responsible of the topological rearrangements at high temperature, resulting in a vitrimeric-like behavior.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Trimethylolpropane tris(3-mercaptopropionate), ≥95.0%