Accéder au contenu
MilliporeSigma
  • In silico screening of dicarboxylic acids for cocrystallization with phenylpiperazine derivatives based on both cocrystallization propensity and solubility advantage.

In silico screening of dicarboxylic acids for cocrystallization with phenylpiperazine derivatives based on both cocrystallization propensity and solubility advantage.

Journal of molecular modeling (2017-03-30)
Piotr Cysewski
RÉSUMÉ

In silico screening was performed to search for binary solids in which a phenylpiperazine-derivative drug was cocrystallized with a dicarboxylic acid. The phenylpiperazine derivative could be any of 61 such drugs, while the dicarboxylic acid could be any of nine such acids. The uniqueness of this approach was that two criteria had to be fulfilled simultaneously, namely a high propensity for cocrystallization and a sufficient solubility advantage. Using the mixing enthalpies of selected pairs of crystal formers with high affinities for one another permitted the classification of candidates with a high probability of cocrystallization. Further modeling of the solubility advantage allowed the identification of many binary solids that potentially exhibit significantly enhanced solubility in water. Based on the computed values for the mixing enthalpies and solubility advantage factors, it was concluded that dicarboxylic acids are both excellent coformers for cocrystallization with phenylpiperazines and very good solubility enhancers; indeed, the use of dicarboxylic acids as coformers would allow the degree of dissolution to be tuned for many of the studied drugs. The observed similarities of the cocrystallization landscapes of the studied drugs and excipients were also explored.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
1-(4-Chlorophenyl)piperazine, ≥98.0% (GC)